- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Ball, Matthew (2)
-
Merfeld, Kara (2)
-
Abbott, Rich (1)
-
Adams, Carl (1)
-
Adhikari, Rana_X (1)
-
Ananyeva, Alena (1)
-
Appert, Stephen (1)
-
Arai, Koji (1)
-
Areeda, Joseph_S (1)
-
Asali, Yasmeen (1)
-
Aston, Stuart_M (1)
-
Austin, Corey (1)
-
Baer, Anne_M (1)
-
Ballmer, Stefan_W (1)
-
Banagiri, Sharan (1)
-
Barker, David (1)
-
Barsotti, Lisa (1)
-
Bartlett, Jeffrey (1)
-
Berger, Beverly_K (1)
-
Betzwieser, Joseph (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT Magnetar vibrational modes are theorized to be associated with energetic X-ray flares. Regular searches for gravitational waves from these modes have been performed by Advanced LIGO (Laser Interferometer Gravitational-wave Observatory) and Advanced Virgo, with no detections so far. Presently, search results are given in upper limits on the root sum square of the integrated gravitational-wave strain. However, the increased sensitivity of current detectors and the promise of future detectors invite the consideration of more astrophysically motivated methods. We present a framework for augmenting gravitational-wave searches to measure or place direct limits on magnetar astrophysical properties in various search scenarios using a set of phenomenological and analytical models.more » « less
-
Brooks, Aidan_F; Vajente, Gabriele; Yamamoto, Hiro; Abbott, Rich; Adams, Carl; Adhikari, Rana_X; Ananyeva, Alena; Appert, Stephen; Arai, Koji; Areeda, Joseph_S; et al (, Applied Optics)Small, highly absorbing points are randomly present on the surfaces of the main interferometer optics in Advanced LIGO. The resulting nanometer scale thermo-elastic deformations and substrate lenses from these micron-scale absorbers significantly reduce the sensitivity of the interferometer directly though a reduction in the power-recycling gain and indirect interactions with the feedback control system. We review the expected surface deformation from point absorbers and provide a pedagogical description of the impact on power buildup in second generation gravitational wave detectors (dual-recycled Fabry–Perot Michelson interferometers). This analysis predicts that the power-dependent reduction in interferometer performance will significantly degrade maximum stored power by up to 50% and, hence, limit GW sensitivity, but it suggests system wide corrections that can be implemented in current and future GW detectors. This is particularly pressing given that future GW detectors call for an order of magnitude more stored power than currently used in Advanced LIGO in Observing Run 3. We briefly review strategies to mitigate the effects of point absorbers in current and future GW wave detectors to maximize the success of these enterprises.more » « less
An official website of the United States government
